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Abstract— This paper presents MEMROC (Multi-Eye to
Mobile RObot Calibration), a novel motion-based calibration
method that simplifies the process of accurately calibrating
multiple cameras relative to a mobile robot’s reference frame.
MEMROC utilizes a known calibration pattern to facilitate
accurate calibration with a lower number of images during the
optimization process. Additionally, it leverages robust ground
plane detection for comprehensive 6-DoF extrinsic calibration,
overcoming a critical limitation of many existing methods that
struggle to estimate the complete camera pose. The proposed
method addresses the need for frequent recalibration in dy-
namic environments, where cameras may shift slightly or alter
their positions due to daily usage, operational adjustments,
or vibrations from mobile robot movements. MEMROC ex-
hibits remarkable robustness to noisy odometry data, requiring
minimal calibration input data. This combination makes it
highly suitable for daily operations involving mobile robots.
A comprehensive set of experiments on both synthetic and real
data proves MEMROC’s efficiency, surpassing existing state-
of-the-art methods in terms of accuracy, robustness, and ease
of use. To facilitate further research, we have made our code
publicly available1.

I. INTRODUCTION

Mobile robots rely on one or more onboard sensors to
perceive the environment and determine their location. Visual
cameras are a popular choice due to their affordability and
ability to capture extensive information from the scene:
this led to a widespread use of such sensors in robotic
navigation [1], [2] and autonomous driving [3], [4]. When
the robot moves, onboard cameras frame the environment
from multiple points of view, that can be related by means
of pure vision algorithms or considering the robot odometry.
Accurate alignment of visual data with respect to the robot
reference frame is crucial for safe navigation [5] and for
enhancing perception, localization, and the robot’s ability
to interact effectively with its environment [6], [7]. To
ensure a robot effectively utilizes visual information of its
surroundings, it is required that the data collected by its
cameras are expressed with respect to the robot reference
frame—typically situated at the central point among its four
wheels on the ground. This is why accurately calibrating the
various cameras with respect to the mobile robot is essential.

Traditional calibration methods rely on specific infras-
tructures for precise sensor installation [8], [9], the need
for environments equipped with numerous markers [10],
[11], the requirement for supplementary sensors such as
lidars to determine feature point correspondences among
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Fig. 1. MEMROC Overview. The system is structured into three primary
components: the Ground Plane Detection module, responsible for identifying
the ground plane; the Ground Plane Validation module, which ensures the
ground plane’s alignment with the mobile robot; and the Motion-Based
Calibration Process, the concluding stage that calibrates the system.

sensors [12], or the necessity of manual image collection pro-
cesses [13]. These approaches are not suitable for frequent
use, especially in dynamic real-world environment, which
can cause minor camera displacements due to everyday
operation, adjustments, or vibrations from robot movement.
Frequent recalibration is necessary in such scenarios, and
existing methods are often cumbersome and time-consuming.
Furthermore, many approaches focus on calibrating cameras
relative to each other requiring overlapping fields of view
and neglecting the fundamental objective of expressing sen-
sor data with the robot’s reference frame [14], [15], [16].
Motion-based calibration methods tackle these limitations by
exploiting robot motion for calibrating cameras with respect
to the robot. However, a key limitation arises from the
inherent planar constraints of most mobile robots, preventing
them from estimating the full 6-DoF of the camera’s extrinsic
parameters solely through incremental movements [17], [18].
To overcome such limitation, Zuniga’s method [19] estimates



all the 6-DoF through the ground plane detection, but it
requires a large amount of data and a refinement procedure
to be accurate; it also exhibits high sensitivity to noisy odom-
etry data—a common issue due to odometry drift that limits
its robustness [19]. Learning-based calibration methods are
faster but might offer a limited accuracy and adaptability to
changing environments, as they often require adherence to
specific vehicle trajectories or the presence of well-defined
road features for successful calibration, hindering their real-
world applicability [20]. The limitations of existing methods
highlight the need for faster, easier, and more robust sensor
calibration techniques that consider the robot’s reference
frame. This would enable robots to maintain optimal perfor-
mance through frequent recalibration and ultimately enhance
their ability to interact effectively with their surroundings.

This paper presents MEMROC: Multi-Eye to Mobile
RObot Calibration. This is a novel motion-based calibra-
tion method for mobile robots which efficiently determines
the full 6-DoF calibration parameters of multiple cameras
relative to the robot incorporating a robust mechanism for
the ground plane detection and its validation. Notably, the
overlap of camera fields of view is not a prerequisite for
this method; however, the optimization process is capable of
taking advantage of the overlap, if available, to refine the
geometric constraints between cameras, ensuring enhanced
accuracy. After comprehensive experiments on both synthetic
and real-world data, MEMROC demonstrated exceptional
accuracy while requiring minimal data inputs. This was
achieved through the observation of a calibration pattern,
such as a checkerboard, from fewer than 20 viewpoints, and
capturing the ground plane at least once. Unlike conventional
approaches, MEMROC’s non-linear optimization technique
shows remarkable robustness against noisy odometry data.
This capability greatly increases the usability of autonomous
mobile robots in daily environments.

Summarizing, this paper presents the following main con-
tributions:

1) The concept of MEMROC, a novel motion-based cal-
ibration method for the estimation of the full 6-DoF
pose of multiple cameras with respect to the robot;

2) A comprehensive performance evaluation of the pro-
posed method by means of simulations and real-
world experiments in both indoor and outdoor settings,
demonstrating its robustness and accuracy;

3) A thorough comparative analysis focusing on how the
precision of MEMROC is minimally dependent on
the number of images used for calibration, showing
its superior precision with minimal data requirements
against other state-of-the-art methods;

4) An extensive, publicly available dataset, including
3000 synthetic and 3000 real images collected with
a mobile robot, intended to facilitate the evaluation of
future camera to robot calibration methods.

The remainder of the paper is organized as follows: Sec-
tion II reviews state-of-the-art methods on camera calibration
for mobile robots. Section III delves into the theoretical

foundation of our method, while Section IV outlines the
dataset collection. Section V provides a detailed analysis
of results on the collected dataset against state-of-the-art
methods, in particular Sections V-A and V-B report outcomes
in synthetic and real-world scenarios, respectively. Finally,
Section VI concludes and outlines future research directions.

II. RELATED WORKS

Multi-sensor calibration on mobile robots can be catego-
rized into three main approaches: appearance-based, motion-
based, and learning-based methods. Appearance-based meth-
ods leverage prior knowledge about the environment. For
instance, Gómez et al. [21] employed scene corners (orthog-
onal trihedrons) to calibrate a 2D laser scanner and a camera.
Similarly, Gao et al. [12] proposed a multi-LiDAR calibration
method using point constraints from retro-reflective targets
placed in the scene. Additionally, Choi et al. [22] utilized the
appearance of two orthogonal planes to determine the spatial
offset between dual 2D LiDARs. However, appearance-based
calibration methods are typically designed for calibrating
specific sensor pairs, and applying them to a multi-sensor
system with various combinations can become complex and
impractical, as noted by Xie et al. [10]. More recently, Meyer
et al. [20] proposed a learning-based method that leverages
road features like lane markings or edges to calibrate yaw,
and ground surface orientation for pitch and roll. However,
this approach requires the vehicle to travel along a straight
path with well-defined road markings. In contrast, Yan et
al. [23] introduced SensorX2Car, which utilizes vanishing
points and the horizon line to estimate the 3-DoF rotation
between the sensor and the robot. This method, however,
relies on the assumption that the vehicle’s orientation always
aligns with its trajectory, which is not true in the case of
cameras mounted on the side of the vehicles [13].

Motion-based approaches draw inspiration from the well-
established hand-eye calibration problem [24]. They estimate
the extrinsic parameters (relative poses) between sensors by
analyzing their combined motions. This typically involves
solving an equation of the form AX = XB, where A and
B represent the motion of two sensors installed on the same
robot and X represents the unknown transformation. Censi et
al. [25] leverage this approach by combining wheel odometry
and exteroceptive sensor data for multi-sensor calibration
on mobile robots. Similarly, Kummerle et al. [26] propose
an algorithm for visual-odometry calibration using motion
data. Della Corte et al. [17] go a step further by estimating
sensor time delays alongside extrinsic parameters within their
motion-based calibration framework. However, a limitation
of these methods is their inability to estimate all 6-DoF
describing the sensor-to-robot transformations due to the
unobservability of the z-coordinate [18]. Works like Heng
et al.’s CamOdoCal [27] address this problem by estimating
full 6-DoF for multiple cameras for identifying feature point
correspondences between the current frame of each camera
and the frames from every other camera’s historical data,
resulting in extensive and time-consuming calibration pro-
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Fig. 2. Formulation of the motion-based calibration method. A mobile robot R equipped with a camera C moves from pose i to i+1 towards a calibration
pattern P in the scene. Ai represents the odometry of the mobile robot with respect to the fixed frame W (i.e., the robot starting position), while Bi

represents the camera pose with respect to the calibration pattern. X denotes the camera to robot transformation to be estimated.

cesses. Zuniga’s RobotAutocalib [19] estimates full 6-DoF
through ground plane detection, but suffers from inconsisten-
cies due to its two-step approach (separately x, y, yaw and
then the remaining 3-DoF). Furthermore, it needs a large
number of images (often exceeding 50) to accurately esti-
mate the ground plane using Structure-from-Motion (SfM)
pipelines. Additionally, it only considers constraints between
individual sensors and a reference, neglecting consistency
across different sensor transformations.

III. METHOD

In this section, our MEMROC approach for full 6-DoF
camera to robot calibration is presented and described. Our
method follows a motion-based approach where calibration
is obtained by minimizing the general ∥AX − XB∥2 cost
function, introducing two main elements: a known calibration
pattern fixed in the scene and a ground plane estimation
module. The use of a known pattern (e.g. checkerboard)
allows to overcome the inherent scale ambiguity in motion-
based approaches, leading to several advantages: (i) more
accurate camera motion estimation and (ii) a lower number
of images needed in the optimization process compared to
methods relying solely on visual features. Ground plane
estimation, on the other hand, allows to address z-coordinate
unobservability and achieve full 6-DoF calibration. It pro-
vides a set of measurements of the camera’s height relative
to the ground which are then used as constraints in the
optimization process.

A schematic overview of MEMROC is shown in Figure 1,
representing its main modules. First, a set of pairs of robot
poses and images is collected by moving the robot in front of
a calibration pattern as depicted in Figure 2; robot poses Ai

are obtained from odometry, while images allow to estimate
camera poses Bi with respect to the calibration pattern by
means of PnP (Perspective-n-Point) algorithm. Images are
also used to compute 3D correspondences based on feature
matching for ground plane detection and validation based on
RANSAC and Singular Value Decomposition. Finally, robot
and camera poses are used in the motion-based optimization

process with ground plane measurements as constraint.

A. Ground plane detection

The general idea is to estimate the ground plane equation
from camera measurements, in order to compute its height
from the ground and use such information in the optimization
process. In particular, assuming a 3D representation of the
scene in the camera frame is available (e.g., pointcloud), we
identify the largest plane in such representation using the
RANSAC (RANdom SAmple Consensus) method [28].

When considering RGB-D cameras, the 3D representation
of the scene can be easily obtained from the pointcloud
provided by the camera. However, the quality of the point-
cloud can be very inaccurate in outdoor scenarios. Therefore,
we consider an alternative approach to obtain 3D points
of the scene based on feature matching between consec-
utive frames. In particular, given two consecutive images
Ii and Ii+1, for each one of them a set of keypoints and
descriptors is extracted (e.g., SIFT or SuperPoint [29]). Let
M = {(p1,i, p1,i+1), . . . , (pM,i, pM,i+1)} the set of matches
between the two images computed by a feature matcher (e.g.,
LightGlue [30]). Based on the matches M and the absolute
camera poses Bi, Bi+1 provided by the PnP algorithm, it is
possible to compute the 3D coordinates of the matches by
means of stereo triangulation using direct linear transform
(DLT) [31]. Note that by using the absolute camera poses,
the final result is a set of 3D points expressed with respect
to the pattern reference frame P , as depicted in Figure 1.
Such points constitutes the 3D scene representation used for
estimating the ground plane with RANSAC (red points in
Figure 1), which provides the equation of the largest plane
in the scene expressed in the general equation form

ax+ by + cz + d = 0 (1)

where a, b and c are the components of the normal vector
n⃗ = (a, b, c) perpendicular to the plane and d is the minimum
distance from the plane, which also represent the height
of the camera from the ground plane to be used in the
constrained calibration process.



B. Ground plane validation

The ground plane detection algorithm described above
aims to compute the plane equation of the largest plane
in the reconstructed scene. However, such plane could it
be different from the ground plane, especially in crowded
indoor scenarios (e.g., vertical walls, large flat objects) so a
validation procedure to filter out wrong detections is needed.

When moving the robot, since the camera is rigidly
attached to the robot, the robot and the camera perform
the same trajectory but expressed in two different fixed
reference frames (i.e., world and pattern respectively). Let
a = {a1, a2, . . . , an} and b = {b1, b2, . . . , bn} two sets of
corresponding 3D points, obtained from the translation part
of matrices Ai and Bi respectively. By means of Singular
Value Decomposition (SVD) [32], it is possible to find a
rigid transformation that optimally aligns the two sets in the
least squares sense:

(R, t) = argmin
R∈SO(3),t∈R3

n∑
i=1

||(Rbi + t)− ai||2 (2)

The obtained rigid transformation describes the roto-
translation (RW

P , tWP ) between the world and the pattern
reference frame. Although the estimated translation is af-
fected by a bias term (it assumes that the 3D points are
coincident, while a and b are only parallel planes which differ
for an offset term), the estimated rotation can be used to
transform the 3D points of the scene obtained Section III-A
in the world reference frame, pW = RW

P pP . By introducing
such operation before the RANSAC-based plane detection,
the estimated plane equation is then expressed in world
coordinates and can be easily verify the correct alignment of
the normal of the plane with the z-axis of the world reference
frame. If the estimated plane is not parallel to the ground, it
is rejected.

C. Camera to robot calibration

As illustrated in Figure 2, for each robot movement, we
collect transformations Ai and Bi representing the robot’s
absolute pose at time step i relative to its initial position (i.e.,
world frame W), and the pose of the camera with respect
to the fixed calibration pattern reference frame. However,
robot poses obtained by odometry are generally noisy and
affected by drift errors. This makes such data unsuitable
for the calibration process, making it preferable to consider
relative movements of the robot to limit the effect of drift
in odometry. Therefore, in MEMROC, we aim to minimizes
the cost function defined as

c =

N−1∑
i=0

∥AX −XB∥2 , (3)

where A represents the robot’s incremental transformation
within a 2D plane, B denotes the camera’s incremental
motion, and X is the camera to robot transformation matrix
we aim to determine through the calibration process. Given
N samples of incremental motion, we define our calibration

methodology through the objective of minimizing a specifi-
cally formulated cost function, detailed in equation (5).

cZi = χi

∥∥[TR
C ]z − zi

∥∥2 (4)

c =

N−1∑
i=0

(∥∥∥TRi

Ri+1
TR
C − TR

C TCi

Ci+1

∥∥∥2 + cZi

)
(5)

In this formulation, TRi

Ri+1
and TCi

Ci+1
symbolize the in-

cremental motions of the robot and the camera, respectively,
capturing their transition from one state to the next. Our
objective is to accurately determine the transformation TR

C ,
representing the rototranslation between the camera and the
robot. An additional term cZi in the cost function aims to
reduce the difference between the z-axis coordinate of the
desired transformation and the camera’s elevation, zi, as
identified through ground plane detection (i.e., zi = d). The
variable χi, which can either be 0 or 1, signifies whether
the ith pose yields a valid measure of the camera’s height
above the ground plane. This approach allows for the precise
estimation of the camera’s 6-DoF pose relative to the robot,
moving beyond simple ground plane detection to integrate
a comprehensive set of spatial data into the calibration
effort. Remarkably, a single zi measurement suffices for
this calibration. Moreover, this optimization process cali-
brates each camera independently with respect to the robot,
thereby eliminating the necessity for overlapping fields of
view among sensors. This strategy not only simplifies the
calibration process but also expands its versatility to support
various sensor arrangements without sacrificing precision.

D. Multi-sensor joint optimization

When multiple cameras are mounted on the vehicle, each
camera can be calibrated independently by means of the
optimization process described in Section III-C. However,
in the case that the cameras have overlapping fields of
view, they can simultaneously detect the calibration pattern
providing additional information on the relative pose between
them. In such a scenario, it is possible to include mutual
relations between cameras in the cost function to optimize
not only the extrinsic parameters of each camera relative to
the robot frame, but also the relative poses between pairs of
cameras.

Consider the scheme in Figure 2 and assume that two
cameras C1 and C2 are mounted on the vehicle in the front
direction. When the robot moves from pose i to pose i+1, if
both cameras can detect the calibration pattern, the relation
between their incremental motion can be expressed as:

T
C1,i

C1,i+1
TC1

R TR
C2

= TC1

R TR
C2

T
C2,i

C2,i+1
(6)

which can be easily reformulated in the general AX = XB
equation by assuming X = TC1

R TR
C2

= (TR
C1

)−1TR
C2

. Note
that such unknown matrix can be expressed as the product
of the two camera to robot transformations TR

C1
and TR

C2
to

be estimated in the calibration process, therefore providing
an additional constraint to be exploited in the optimization.



Let denote by Si the set of camera pairs (j, k) which
detects the calibration pattern at step i, and 1Si the cor-
responding indicator function. With such notation, the con-
straint describing the joint detection by multiple M cameras
at step i can be expressed as:

cJi =

M∑
j=1

M∑
k=j

1Si

∥∥∥TCj,i

Cj,i+1
T

Cj

R TR
Ck

− T
Cj

R TR
Ck

T
Ck,i

Ck,i+1

∥∥∥2
(7)

Finally, including the joint constraint (7) in the cost
function (5), the overall cost function can be expressed as:

c =

N−1∑
i=0

 M∑
j=1

(∥∥∥TRi

Ri+1
TR
C − TR

C T
Cj,i

Cj,i+1

∥∥∥2 + cZi

)
+ cJi


(8)

In the following, Joint-MEMROC will be used to denote
the calibration process with joint optimization. By exploiting
the mutual constraints between camera poses introduced
by overlapping fields of view, our extensive experiments
will demonstrate that Joint-MEMROC significantly enhances
calibration accuracy. This improvement comes from incorpo-
rating additional geometric information derived from over-
lapping areas, enriching the calibration process by providing
a more detailed understanding of the sensor configuration.

IV. DATASET

We collected a dataset2 comprising 3000 synthetic images
and 3000 real images, to comprehensively validate the pro-
posed method for calibrating a multi-camera system fixed
on a mobile robot. The synthetic images were generated
using the Gazebo simulation toolbox, wherein we utilized
a Husky Unmanned Ground Vehicle (UGV) from Clearpath
Robotics3 equipped with three simulated Intel RealSense
Depth D455 sensors. We conducted 10 independent image
acquisition runs across diverse environments, each featuring
distinct background and floor textures, as shown in Figure 3.
For each run, the mobile robot was moved in 100 different
poses, at varying distances and orientations in front of a
5×4 checkerboard pattern with 10 cm squares. During each
pose, all three sensors simultaneously captured images, their
corresponding 3D point clouds, and the robot’s odometry
(i.e., its position and orientation relative to the starting posi-
tion). The synthetic dataset includes ground truth information
consisting of:

• The geometric transformations of each sensor relative
to the mobile robot’s reference frame;

• The relative rototranslations among the various sensors
of the multi-camera system.

The real part of the dataset consists of images captured
by the mobile robot’s three onboard cameras, all front-
facing, from Robotnik4. The robot is equipped with two Intel
RealSense LiDAR L515 sensors and one Intel RealSense

2The dataset will be made publicly available upon paper acceptance.
3https://clearpathrobotics.com/
4https://robotnik.eu/

Depth D455 sensor, each designed with overlapping fields of
view (FoV). While D455 cameras can be used both outdoor
and indoor, L515 cameras are designed especially for indoor
applications and provides very low-quality point cloud when
used outside; in the real dataset we consider both sensor to
prove the robustness and generality of our approach.

The real-world data consists of images captured in 10
diverse scenarios: 6 indoor and 4 outdoor environments. We
collected the data by driving the mobile robot in 100 poses
at various distances and orientations with respect to a 6×5
checkerboard with 11 cm squares. During data acquisition,
all three sensors captured images simultaneously together
with their corresponding 3D point clouds and the robot’s
odometry.

The indoor data encompasses two distinct environments
showcasing variations in ground surfaces, background tex-
tures, and the inclination and positioning of the calibration
pattern. This diversity mainly aims to challenge the calibra-
tion methods with different visual features. The outdoor data
focuses on capturing images with diverse backgrounds and
varying checkerboard inclinations. This data is particularly
valuable for testing the robustness of calibration methods
against potential lighting variations and when the robot’s
odometry becomes very noisy due to the inherent drift
experienced on uneven terrains.

Crucially, for both the synthetic and real datasets, we
maintained the relative positions of the cameras throughout
the entire data collection process. This allows us to evaluate
the consistency of calibration methods across multiple runs.

This dataset is valuable for comparing various multi-
camera calibration methods. The availability of ground truth
information enables to assess how well they perform with or
without the calibration patterns, their accuracy with varying
image quantities and their effectiveness in different scenarios.

Furthermore, in our dataset a checkerboard pattern is
visible in all images: it can be used not only for calibration
but also as ground truth for the evaluation of visual odometry
methods [6], [33]. To the best of our knowledge, no other
publicly available dataset offers this combination of features,
making it a beneficial resource for the research community.

V. EXPERIMENTS AND RESULTS

We conducted several experiments on the collected data to
demonstrate the effectiveness and robustness of our calibra-
tion method in practice. First, we validated our method using
synthetic data, whose ground truth parameters are known
(Section V-A). Next, we assessed the calibration accuracy in
the real-world environments (Section V-B). We considered
both datasets for comparing the proposed methods against the
state-of-the-art calibration approaches, namely the motion-
based method proposed by Zuñiga et al. [19] and the
learning-based method proposed by Yan et al. [23]. They
both calibrate sensors with respect to the vehicle reference
frame, but the latter calibration method only provides rotation
calibration parameters, therefore only rotation errors will
be reported in the resulting tables. To compare calibration
performance, we also assessed the accuracy of estimating



Fig. 3. Set of 4 images representing 4 different scenarios where the dataset was collected. The first two on the left show two different real-world scenarios,
the other two simulated scenarios.

the transformations between the various sensors in the multi-
camera system. To establish a reliable baseline for our mea-
surements in real-world calibration parameter experiments,
we utilized the stereo calibration method developed by Li et
al. [34] as the ground truth reference. This method will also
be used as a comparison in the simulated dataset to show its
correctness and accuracy.

A. Experiments on synthetic dataset

The primary goal of using synthetic data is to evaluate
the correctness and accuracy of our calibration method by
directly comparing it to the ground truth. This allows us
to compute the translation error across the three axes and
the rotation error around the three rotation axes, expressed
in terms of roll, pitch, and yaw. This metric was used
to evaluate first the precision of the estimated camera-to-
robot transformation and then we assess the consistency
of the transformations among cameras by evaluating the
camera-to-camera rototranslation error. This helps us identify
any potential cumulative errors that might arise during the
calibration process.

Tables I and II report the average error for each calibration
parameter of camera-to-robot and camera-to-camera transfor-
mations, respectively. These errors represent the mean values
calculated across all 10 synthetic datasets.

TABLE I
AVERAGE ERROR IN CAMERA-TO-ROBOT TRANSFORMATION

Method Translation parameters Rotation parameters
tx [cm] ty [cm] tz [cm] rx [deg] ry [deg] rz [deg]

MEMROC 0.610.610.61 0.25 0.15 0.080.080.08 0.130.130.13 0.16
Joint-MEMROC 0.66 0.160.160.16 0.140.140.14 0.14 0.14 0.150.150.15

RobotAutocalib [19] 0.92 0.79 0.92 1.87 1.32 1.84
SensorX2Car [23] − − − 0.26 0.82 1.22

TABLE II
AVERAGE ERROR IN CAMERA-TO-CAMERA TRANSFORMATION

ESTIMATION ACHIEVED BY CALIBRATION METHODS

Method Translation parameters Rotation parameters
tx [cm] ty [cm] tz [cm] rx [deg] ry [deg] rz [deg]

MEMROC 0.42 0.230.230.23 0.87 0.110.110.11 0.18 0.15
Joint-MEMROC 0.200.200.20 0.25 0.78 0.22 0.23 0.140.140.14

RobotAutocalib [19] 2.58 4.99 3.72 2.52 3.09 1.68
SensorX2Car [23] − − − 0.44 0.21 2.40

Li [34] 0.26 0.27 0.340.340.34 0.12 0.140.140.14 0.17

Our method achieves higher calibration accuracy for both
translation and rotation errors compared to existing state-
of-the-art approaches. Notably, RobotAutocalib struggles
with camera-to-camera transformations, possibly due to its
disregard for relative constraints existing among cameras.
Conversely, the Li stereo calibration method performs well in
this specific scenario. Yan’s method, despite being learning-
based, demonstrates strong accuracy and generalizability
across various scenarios, particularly for rotation parameters.

Analysis on image quantity: the synthetic dataset enables
us to evaluate the impact of the number of images on the
effectiveness of our multi-sensor calibration method.

Fig. 4. Impact of image quantity on calibration methods, where the lines
represent the average errors and the shaded areas indicate the standard
deviation, reflecting the variability and consistency of each method.

Figure 4 illustrates the substantial impact of image quan-
tity on the effectiveness of calibration methods. From this
point of view MEMROC shows remarkable robustness and
accuracy even with minimal data available for the calibra-
tion, outperforming the motion-based method by Zuñiga’s
algorithm and the learning-based Yan’s approach.

Analysis with noisy odometry: the synthetic dataset en-
abled us to test the robustness and efficiency of our method
in challenging scenarios, specifically where odometry mea-
surements are compromised by noise. To thoroughly evaluate
robustness in such conditions, we introduced Gaussian noise
N(0, σt) for translation, with σt = λ · 0.2 cm and Gaussian



noise N(0, σr) for rotation, with σr = λ · 0.01 rad where
λ ∈ [0, 10]. Noise primarily affects odometry measurements
in the x and y axes for translation, and in the z-axis for
rotation, reflecting the 2D nature of the motion estimates.
Figure 6 illustrates how increasing noise levels in odometry
measurements affect the average translation and rotation
errors in camera-to-robot transformations. As a result, the
comparison in this figure is limited to motion-based calibra-
tion methods, since they rely on odometry data.

Fig. 5. Evaluation of motion-based calibration method with incremental
noise in measurements provided by odometry, with λ ∈ [0, 10]. The lines
represent the average errors and the shaded areas indicate the standard
deviation.

Figure 6 demonstrates that the proposed motion-based
method exhibits significantly higher accuracy and robust-
ness compared to the RobotAutocalib method under noisy
conditions. Notably, our method achieves translation errors
consistently below 2 cm and rotation errors below 1◦. This
highlights its suitability for real-world scenarios with noisy
measurements. Our experiments with synthetic data demon-
strate the efficiency of the proposed method in two key
ways. First, they enable the calibration of all 6-DoF for
both camera-to-robot and camera-to-camera transformations.
Second, they achieve high accuracy, surpassing the motion-
based method by Zuñiga and the learning-based by Yan. The
ability to calibrate with just a few images highlights that the
system is particularly suited for real-world scenarios where
a fast and user-friendly approach is crucial.

B. Experiments on real-world scenarios

To comprehensively assess the effectiveness of our pro-
posed calibration methods, we conducted a series of exper-
iments in real-world indoor and outdoor scenarios. These
experiments allowed us to analyze not only the precision of
the calibration but also its robustness under non-ideal condi-
tions. This includes situations where odometry measurements
suffer from drift errors. Notably, these real-world tests were
crucial for demonstrating the consistency of the results across
diverse environments with varying visual-features and floor
types, which can significantly impact odometry accuracy.
We evaluated our calibration method against state-of-the-art
approaches on 10 real-world datasets, each containing 300

images. Fig. 6 shows for simplicity only the average value
and standard deviation obtained by MEMROC and state-of-
the-art methods across all runs for each calibration parameter
(tx, ty , tz for translation and rx, ry , rz for rotation) of the
Intel RealSense LiDAR L515 sensor.

Fig. 6. Calibration parameters with average and standard deviation of
the Intel RealSense LiDAR L515 sensor estimated by different calibration
methods. The expected values were measured by using an AprilTag fixed
at a precise distance from the mobile robot in front of the sensors.

Our experiments demonstrate that MEMROC consistently
outperform existing approaches. It achieves higher accuracy
on average, and it exhibits greater consistency across mul-
tiple runs of the algorithm, resulting in reliable and precise
measurements.

TABLE III
AVERAGE ERROR IN CAMERA-TO-CAMERA TRANSFORMATION

ESTIMATION ACHIEVED BY CALIBRATION METHODS

Method Translation parameters Rotation parameters
tx [cm] ty [cm] tz [cm] rx [deg] ry [deg] rz [deg]

MEMROC 1.97 1.15 0.34 0.79 1.02 0.72
Joint-MEMROC 0.480.480.48 0.560.560.56 0.330.330.33 0.740.740.74 0.830.830.83 0.660.660.66

RobotAutocalib [19] 2.41 4.42 2.43 3.83 4.82 4.22
SensorX2Car [23] - - - 2.95 1.99 2.75

Table III presents the average errors for relative calibration
parameters between the three cameras. Our method achieves
superior calibration accuracy compared to both state-of-the-
art motion-based and learning-based approaches. It should
be emphasized that the MEMROC achieves even higher
precision through joint optimization of all sensors, leveraging
their overlapping fields of view. This technique is particularly
effective for multi-sensor calibration.



VI. CONCLUSIONS

In this paper we presented MEMROC, a novel method
for calibrating multiple sensors with respect to a mobile
robot. Utilizing robust ground plane detection, MEMROC
addresses z-unobservability in planar motion, enabling the
estimation of cameras’ full 6-DoF pose with just a few
images of a simple calibration pattern. Moreover, when
sensors have overlapping fields of view, MEMROC exploits
this condition optimizing also the geometric constraints
existing between sensors. A comprehensive analysis of our
method against state-of-the-art methods demonstrates that
it is highly accurate and more robust than other methods
in non-ideal conditions, when the odometry is affected by
noise. Moreover, MEMROC proves to be suitable for daily
use and for real-world scenarios as it requires only minimal
data to achieve higher calibration accuracy. Currently, we
are investigating how to completely remove the checkerboard
while maintaining the same performance level. We also plan
to extend the technique to more sensors like IMU and Laser
2D.
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[4] D. Fernandes, A. Silva, R. Névoa, C. Simões, D. Gonzalez, M. Gue-
vara, P. Novais, J. Monteiro, and P. Melo-Pinto, “Point-cloud based
3d object detection and classification methods for self-driving appli-
cations: A survey and taxonomy,” Information Fusion, vol. 68, pp.
161–191, 2021.

[5] D. Fusaro, E. Olivastri, D. Evangelista, M. Imperoli, E. Menegatti,
and A. Pretto, “Pushing the limits of learning-based traversability
analysis for autonomous driving on cpu,” in International Conference
on Intelligent Autonomous Systems. Springer, 2022, pp. 529–545.

[6] F. Zheng and Y.-H. Liu, “Visual-odometric localization and mapping
for ground vehicles using se (2)-xyz constraints,” in 2019 International
Conference on Robotics and Automation (ICRA). IEEE, 2019, pp.
3556–3562.

[7] G. Evangelidis and B. Micusik, “Revisiting visual-inertial structure-
from-motion for odometry and slam initialization,” IEEE Robotics and
Automation Letters, vol. 6, no. 2, pp. 1415–1422, 2021.

[8] Z. Koppanyi and C. Toth, “Experiences with acquiring highly redun-
dant spatial data to support driverless vehicle technologies,” ISPRS
Annals of the Photogrammetry, Remote Sensing and Spatial Informa-
tion Sciences, vol. 4, pp. 161–168, 2018.

[9] M. Horn, T. Wodtko, M. Buchholz, and K. Dietmayer, “Extrinsic
infrastructure calibration using the hand-eye robot-world formulation,”
in 2023 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2023, pp.
1–8.

[10] Y. Xie, R. Shao, P. Guli, B. Li, and L. Wang, “Infrastructure based
calibration of a multi-camera and multi-lidar system using apriltags,”
in 2018 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2018, pp.
605–610.

[11] G. Antonelli, F. Caccavale, F. Grossi, and A. Marino, “Simultaneous
calibration of odometry and camera for a differential drive mobile
robot,” in 2010 IEEE International Conference on Robotics and
Automation. IEEE, 2010, pp. 5417–5422.

[12] C. Gao and J. R. Spletzer, “On-line calibration of multiple lidars on a
mobile vehicle platform,” in 2010 IEEE International Conference on
Robotics and Automation. IEEE, 2010, pp. 279–284.

[13] Y. Wang, W. Jiang, K. Huang, S. Schwertfeger, and L. Kneip, “Accu-
rate calibration of multi-perspective cameras from a generalization of
the hand-eye constraint,” in 2022 International Conference on Robotics
and Automation (ICRA). IEEE, 2022, pp. 1244–1250.

[14] G. Yan, Z. Liu, C. Wang, C. Shi, P. Wei, X. Cai, T. Ma, Z. Liu,
Z. Zhong, Y. Liu et al., “Opencalib: A multi-sensor calibration toolbox
for autonomous driving,” Software Impacts, vol. 14, p. 100393, 2022.

[15] P. Furgale, J. Rehder, and R. Siegwart, “Unified temporal and spatial
calibration for multi-sensor systems,” in 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, 2013, pp. 1280–
1286.

[16] J. Jiao, Y. Yu, Q. Liao, H. Ye, R. Fan, and M. Liu, “Automatic
calibration of multiple 3d lidars in urban environments,” in 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2019, pp. 15–20.

[17] B. Della Corte, H. Andreasson, T. Stoyanov, and G. Grisetti, “Unified
motion-based calibration of mobile multi-sensor platforms with time
delay estimation,” IEEE Robotics and Automation Letters, vol. 4, no. 2,
pp. 902–909, 2019.

[18] C. X. Guo, F. M. Mirzaei, and S. I. Roumeliotis, “An analytical
least-squares solution to the odometer-camera extrinsic calibration
problem,” in 2012 IEEE International Conference on Robotics and
Automation. IEEE, 2012, pp. 3962–3968.
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